MediaWiki API result
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"compare": {
"fromid": 1,
"fromrevid": 1,
"fromns": 0,
"fromtitle": "Pagina maestra",
"toid": 2,
"torevid": 2,
"tons": 0,
"totitle": "Triangulu",
"*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Linia 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Linia 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\"><strong>MediaWiki </del>\u00e8 <del class=\"diffchange diffchange-inline\">stato installato</del>.<del class=\"diffchange diffchange-inline\"></strong></del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[File:Triangle illustration.svg|thumb|Un triangulu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">In [[giumitria]], u '''triangulu ''' h\u00e8 un [[poligunu]] furmatu da tr\u00e8 ''[[angulu|anguli]]'' o [[vertici (giumitria)|vertici]] </ins>\u00e8 <ins class=\"diffchange diffchange-inline\">da tr\u00e8 [[latu (giumitria)|lati]]. Ripprisenta a [[figura giumetrica|figura]] inc\u00f9 u pi\u00f9 picculu numaru di lati, ch\u00ec tr\u00e8 h\u00e8 u numaru minimu di [[sigmentu|sigmenti]] nicissarii par dilimit\u00e0 una [[superficia (matematica)|superficia]] chjusa</ins>. \u00a0</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">Consulta la </del>[<del class=\"diffchange diffchange-inline\">https</del>:<del class=\"diffchange diffchange-inline\">//www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org/wiki/Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Help:Contents guida utente</del>] <del class=\"diffchange diffchange-inline\">per maggiori informazioni sull</del>'<del class=\"diffchange diffchange-inline\">uso </del>di <del class=\"diffchange diffchange-inline\">questo software wiki</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Carattaristichi di u triangulu ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[</ins>[<ins class=\"diffchange diffchange-inline\">File</ins>:<ins class=\"diffchange diffchange-inline\">Triangle sommeangles</ins>.<ins class=\"diffchange diffchange-inline\">svg|upright=1</ins>.<ins class=\"diffchange diffchange-inline\">4|thumb| A somma di l'anguli interni d'un triangulu h\u00e8 uguali \u00e0 180\u00b0.]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">U triangulu h\u00e8 carattarizatu da i siguenti prubit\u00e0</ins>:</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"># h\u00e8 una figura indifurmevuli, \u00e0 a diffarenza di i poliguni inc\u00f9 un grandi numaru di lati; assignati i lunghezzi di i lati, s\u00f2 ditarminati univucamenti ancu l'anguli;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"># h\u00e8 l'unicu poligunu par u quali \u00f9n h\u00e8 micca richiestu ch'eddu sii [[Poligunu rigulari|rigulari]] parch'eddu si pudissi [[Poligunu rigulari|circuscriva]] \u00e8 iscriva una [[circumfarenza]], parch\u00ec par tr\u00e8 punti passa sempri una \u00e8 una sola circumfarenza;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"># a somma di l'anguli interni h\u00e8 uguali \u00e0 un [[angulu paru]], veni \u00e0 d\u00ec 180\u00b0, essendu quantunqua pricisatu ch\u00ec 'ss'ugualit\u00e0 vali sultantu in a [[giumitria euclidea]] \u00e8 micca in altri tipi di giumitria com'\u00e8 a [[giumitria sferica]] \u00e8 quidda [[giumitria iperbolica|iperbolica]</ins>]<ins class=\"diffchange diffchange-inline\">, induva inveci 'ssa somma h\u00e8, rispittivamenti, pi\u00f9 maiori \u00e8 minori ch'\u00e8 180\u00b0;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"># a somma di dui lati devi essa sempri pi\u00f9 grandi ch</ins>'<ins class=\"diffchange diffchange-inline\">\u00e8 u terzu latu, \u00e8 \u00e0 a diffarenza </ins>di <ins class=\"diffchange diffchange-inline\">dui lati devi essa sempri pi\u00f9 minori ch'\u00e8 u terzu latu</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>== <del class=\"diffchange diffchange-inline\">Per iniziare </del>==</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Dui trianguli s\u00f2 [[Cungruenza (giumitria)|cungruenti]] s'eddi suddisfani alminu un di i [[criterii di cungruenza di i trianguli|criterii di cungruenza]].</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki.org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special:MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual:Configuration_settings Impostazioni </del>di <del class=\"diffchange diffchange-inline\">configurazione</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Manual</del>:<del class=\"diffchange diffchange-inline\">FAQ Domande frequenti su MediaWiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Dui trianguli si dicini [[similitudine (giumitria)|simili]] s'eddi suddisfani alminu un di i [[Criterii di similitudine#Trianguli simili|criterii di similitudina]].</ins></div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">* </del>[<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">lists.wikimedia.org</del>/<del class=\"diffchange diffchange-inline\">postorius</del>/<del class=\"diffchange diffchange-inline\">lists</del>/<del class=\"diffchange diffchange-inline\">mediawiki</del>-<del class=\"diffchange diffchange-inline\">announce</del>.<del class=\"diffchange diffchange-inline\">lists</del>.<del class=\"diffchange diffchange-inline\">wikimedia.org/ Mailing list annunci MediaWiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://www.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special:MyLanguage</del>/<del class=\"diffchange diffchange-inline\">Localisation#Translation_resources Trova MediaWiki nella tua lingua</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>== <ins class=\"diffchange diffchange-inline\">Classificazioni di i trianguli </ins>==</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>* [<del class=\"diffchange diffchange-inline\">https</del>://<del class=\"diffchange diffchange-inline\">www</del>.<del class=\"diffchange diffchange-inline\">mediawiki</del>.<del class=\"diffchange diffchange-inline\">org</del>/<del class=\"diffchange diffchange-inline\">wiki</del>/<del class=\"diffchange diffchange-inline\">Special</del>:<del class=\"diffchange diffchange-inline\">MyLanguage/Manual</del>:<del class=\"diffchange diffchange-inline\">Combating_spam Imparare a combattere lo spam sul tuo wiki</del>]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">I trianguli poni essa classificati siont'\u00e8 a lunghezza rilativa di i lati:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* In un '''[[triangulu equilateru]]''' tutti i lati ani una lunghezza uguali. Un triangulu equilateru si p\u00f2 difiniscia di manera equivalenti com'\u00e8 triangulu equiangulu, vali \u00e0 d\u00ec un triangulu ch\u00ec t'h\u00e0 i so anguli interni di uguali ampiezza, para \u00e0 60\u00b0.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">In un '''</ins>[<ins class=\"diffchange diffchange-inline\">[triangulu isusceli]]''' dui lati ani una lunghezza uguali. Un triangulu isusceli si p\u00f2 difiniscia di manera equivalenti com'\u00e8 un triangulu ch\u00ec t'h\u00e0 dui anguli interni di uguali ampiezza.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* In un '''[[triangulu scalenu]]''' tutti i lati ani lunghezzi diffarenti. Un triangulu scalenu si p\u00f2 difiniscia di manera equivalenti com'\u00e8 un triangulu avendu i tr\u00e8 anguli interni d'ampiezzi diffarenti.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| align=\"center\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|- align=\"center\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[File:Triangle.Equilateral.svg|300x100px|Triangulu equilateru]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[File:Triangle.Isosceles.svg|300x100px|Triangulu isusceli]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[File</ins>:<ins class=\"diffchange diffchange-inline\">Triangle.Scalene.svg|300x100px|Triangulu scalenu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|- align=\"center\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|Equilateru || Isusceli || Scalenu</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">I trianguli poni essa classificati ancu siont'\u00e8 i diminsioni di u so angulu internu pi\u00f9 ampiu; s\u00f2 discritti di seguitu usendu i gradi d'arcu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Un '''[[triangulu rettu]]''' (o '''triangulu rittangulu''') h\u00e0 un angulu internu di 90\u00b0, veni \u00e0 d\u00ec un [[angulu rettu]]. U latu oppostu \u00e0 l'angulu rettu h\u00e8 dittu ''[[iputenusa]]''; h\u00e8 u latu pi\u00f9 longu di u [[triangulu rettu]]. L'altri dui lati di u triangulu s\u00f2 ditti ''[[Catetu|cateti]]''. Par stu triangulu vali u [[tiurema di Pitagora]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Un '''[[triangulu ottusu]]''' h\u00e0 un angulu internu di pi\u00f9 di 90\u00b0, veni \u00e0 d\u00ec un [[angulu ottusu]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Un '''[[triangulu acutu]]''' h\u00e0 tutti l'anguli interni di pi\u00f9 di 90\u00b0, veni \u00e0 d\u00ec t'h\u00e0 tr\u00e8 [[Angulu acutu|anguli acuti]].</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* Un triangulu equiangulu, veni \u00e0 d\u00ec s'\u00e8 h\u00e0 tutti l'anguli interni uguali, veni \u00e0 d\u00ec di 60\u00b0.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Par i trianguli ch\u00ec \u00f9n s\u00f2 micca rittanguli vali una generalisazioni di u [[tiurema di Pitagora]] cunnisciuta in trigunumitria com'\u00e8 [[Tiurema di u cusinu|tiurema di Carnot]]. </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| align=\"center\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|- align=\"center\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[File:Triangolo-Rettangolo.svg|100px|Triangulu rittangulu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[File:Triangle.Obtuse.svg|100px|Triangulu angulu ottusu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|[[File:Triangle.Acute.svg|100px|Triangulu angulu acutu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|- align=\"center\"</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|Rittangulu || Angulu ottusu || Angulu acutu</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Punti nutevuli ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00c0 ogni triangulu s\u00f2 assuciati parechji punti, ciascunu di i quali assumi un rollu ch\u00ec, in calch\u00ec manera, u qualificheghja com'\u00e8 cintrali par u triangulu stessu. Si poni definiscia sti punti di manera cuncisa riferendu si \u00e0 un triangulu <math>T</math> di u quali dinutemu c\u00f9 <math>A</math>, <math>B</math> \u00e8 <math>C</math> i vertici \u00e8 i lati opposti rispittivamenti c\u00f9 <math>a<</ins>/<ins class=\"diffchange diffchange-inline\">math>, <math>b<</ins>/<ins class=\"diffchange diffchange-inline\">math> \u00e8 <math>c</math></ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* l'[[ortucentru]] di <math>T</math> h\u00e8 l'intersizzioni di i so [[Altezza (giumitria)|altezzi]];</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[baricentru (giumitria)|baricentru]] o ''cintroidi'' di <math>T</math> h\u00e8 l'intersizzioni di i so [[Mediana (giumitria)|midiani]];</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* l'[[incentru]] di <math>T</math> h\u00e8 l'intersizzioni di i so tr\u00e8 [[bisettrici|bisettrici]], vali \u00e0 d\u00ec u centru di l'[[inchjerchju]] di <math>T</math>;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[circucentru]] di <math>T</math> h\u00e8 l'intersizzioni di i so tr\u00e8 assi, vali \u00e0 d\u00ec u centru di a so circumfarenza circuscritta (vedi [[circumchjerchju]]);</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* l'[[excentru]] di <math>T</math> oppostu \u00e0 un di i so vertici <math>A</math> h\u00e8 l'intersizzioni di a so bisettrici in <math>A</math> \u00e8 di i dui bisettrici esterni rilativi \u00e0 i dui vertici rimanenti <math>B</math> \u00e8 <math>C</math>;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[puntu di Bevan]] di <math>T</math> h\u00e8 u circucentru di u [[triangulu excintrali]] di <math>T</math>; </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[puntu d'Apolloniu]] di <math>T</math> h\u00e8 l'intersizzioni di i tr\u00e8 sigmenti ch\u00ec rispittivamenti uniscini un vertici <math>A</math> di <math>T</math> inc\u00f9 u puntu in u quali l'exchjerchju di <math>T</math> oppostu \u00e0 <math>A</math> h\u00e8 tangenti \u00e0 u chjerchju tangenti \u00e0 i tr\u00e8 exchjerchji di <math>T</math>; </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[puntu di Gergonne]] di <math>T</math> h\u00e8 l'intersizzioni di i tr\u00e8 sigmenti ch\u00ec rispittivamenti uniscini un vertici <math>A</math> di <math>T</math> inc\u00f9 u puntu in u quali u latu di <math>T</math> oppostu \u00e0 <math>A</math> h\u00e8 tangenti di l'[[inchjerchju]] di <math>T<</ins>/<ins class=\"diffchange diffchange-inline\">math>;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[puntu di Nagel]] di <math>T<</ins>/<ins class=\"diffchange diffchange-inline\">math> h\u00e8 l'intersizzioni di i tr\u00e8 sigmenti ciascunu di i quali unisci un vertici di <math>T<</ins>/<ins class=\"diffchange diffchange-inline\">math> inc\u00f9 u puntu in u quali u so latu oppostu h\u00e8 tangenti di u currispundenti [[exchjerchju]]; </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">* u [[puntu </ins>di <ins class=\"diffchange diffchange-inline\">Nabulionu</ins>]<ins class=\"diffchange diffchange-inline\">] di <math>T</math> h\u00e8 l'intersizzioni di i tr\u00e8 sigmenti ch\u00ec cullegani ognunu di i so vertici <math>A</math> inc\u00f9 u centru di u triangulu equilateru custruitu, esternamenti \u00e0 <math>T</math>, nantu \u00e0 u latu <math>a</math> oppostu \u00e0 <math>A</math>;</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">u [[centru di i novi punti]] di <math>T</math> h\u00e8 u centru di u cusiddittu [[chjerchju di i novi punti]] (o [[chjerchju di Feuerbach]]) di <math>T</math>; sti novi punti cumprendini i tr\u00e8 punti medii di i lati di <math>T</math>, i tr\u00e8 peda di l'[[altezza d'un triangulu|altezzi]] di <math>T</math>, i punti medii di i tr\u00e8 sigmenti ciascunu di i quali unisci un vertici di <math>T</math> inc\u00f9 l'</ins>[<ins class=\"diffchange diffchange-inline\">[ortucentru]] di <math>T</math>.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Formuli ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Formuli trigunumetrichi ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[File</ins>:<ins class=\"diffchange diffchange-inline\">Triangle.TrigArea.svg|frame|right|S'appiega a trigunumitria par truv\u00e0 l'altezza <math>h</math>]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L'aria d'un triangulu p\u00f2 essa truvata par via [[Trigunumitria|trigunumetrica]]. Usendu i lettari di a figura \u00e0 dritta, l'altezza <math>h=a\\sin\\gamma<</ins>/<ins class=\"diffchange diffchange-inline\">math>. Sustituiscendu quissa in a formula truvata innanzi (par via giumetrica), <math>S=\\frac{1}{2}ab\\sin\\gamma<</ins>/<ins class=\"diffchange diffchange-inline\">math></ins>. <ins class=\"diffchange diffchange-inline\">L'aria d'un triangulu h\u00e8 dunqua ancu uguali \u00e0 u mezu pruduttu di dui lati par u [[Sinu (trigunumitria)|sinu]] di l'angulu cumpresu</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Par via di cunsiquenza, par l'idantit\u00e0 <math>\\sin x=\\sin(\\pi-x)</math>, l'aria d'un qualsiasi triangulu inc\u00f9 i dui lati <math>a</math> \u00e8 <math>b</math> \u00e8 l'angulu cumpresu <math>\\gamma</math>, h\u00e8 uguali \u00e0 l'aria di u triangulu inc\u00f9 i stessi lati <math>a</math> \u00e8 <math>b</math> ma inc\u00f9 l'angulu cumpresu supplimintariu <math>(\\pi-\\gamma)</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L'aria d'un [[parallelugramma]] inc\u00f9 dui lati aghjacenti <math>a<</ins>/<ins class=\"diffchange diffchange-inline\">math> \u00e8 <math>b<</ins>/<ins class=\"diffchange diffchange-inline\">math> \u00e8 angulu cumpresu <math>\\gamma</math> h\u00e8 u doppiu di quidda di u triangulu ch\u00ec h\u00e0 i stessi dati, veni \u00e0 d\u00ec <math>ab\\sin\\gamma</math>.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Par risolva u triangulu, veni \u00e0 d\u00ec ditarmin\u00e0 a misura di tutti i lati \u00e8 anguli, dati dui lati \u00e8 l'angulu cumpresu fr\u00e0 eddi, o un latu \u00e8 i dui anguli aghjacenti, s'usani u [[tiurema di i sini]] \u00e8 u [[tiurema di u cusinu]], quist'ultimu essendu megliu cunnisciutu c\u00f9 u nomu di tiurema di Carnot.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">L'[[aria]] <math>A</math> di u triangulu p\u00f2 essa misurata inc\u00f9 a formula matematica:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\"><math>A = \\frac{bh}{2},</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">induva <math>b<</ins>/<ins class=\"diffchange diffchange-inline\">math> h\u00e8 a basa \u00e8 <math>h</math> l'altezza \u00e0 edda rilativa, parch\u00ec u triangulu h\u00e8 cunsidaratu com'\u00e8 a mit\u00e0 d'un parallelugramma di basa <math>b</math> \u00e8 altezza <math>h</math>.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Di manera altirnativa l'aria di u triangulu p\u00f2 essa calculata inc\u00f9</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\"><math>A = \\sqrt{p(p - a)(p - b)(p - c)},</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">induva <math>a</math>, <math>b</math> \u00e8 <math>c</math> s\u00f2 i lati \u00e8 <math>p</math> u [[mezu perimetru</ins>]<ins class=\"diffchange diffchange-inline\">] ([[Formula d'Erone]]).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">=== Formuli analitichi ===</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Cunsidarendu un triangulu <math>ABC</math> in u [[pianu cartesianu]] individuatu par via di i coppii di [</ins>[<ins class=\"diffchange diffchange-inline\">Cuurdinati cartesiani|cuurdinati]] di i vertici <math>(x_A,y_A), (x_B,y_B), (x_C,y_C)</math>.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">A so aria <math>A</math> h\u00e8 datu da l'esprissioni</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>:<ins class=\"diffchange diffchange-inline\"><math>A=\\frac{1}{2} \\left| \\det\\begin{pmatrix}x_A & x_B & x_C \\\\ y_A & y_B & y_C \\\\ 1 & 1 & 1\\end{pmatrix} \\right| = \\frac{1}{2} \\big| x_A (y_B - y_C) - x_B(y_A - y_C) + x_C (y_A - y_B) \\big|,<</ins>/<ins class=\"diffchange diffchange-inline\">math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">oppuri inc\u00f9 un'esprissioni ch\u00ec \u00f9n improda micca u cuncettu di matrici</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>A = \\frac{ \\big| (y_B-y_A)(x_C-x_B)+(y_B-y_C)(x_B-x_A) \\big|}{2},<</ins>/<ins class=\"diffchange diffchange-inline\">math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">oppuri</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>A = ( x_M - x_m )( y_M - y_m ) - \\left( \\frac{1}{2}\\big|x_A - x_B \\big| \\big|y_A - y_B \\big| + \\frac{1}{2}\\big|x_A - x_C \\big| \\big|y_A - y_C \\big| + \\frac{1}{2}\\big|x_B - x_C \\big| \\big|y_B - y_C \\big|\\right),</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">induva</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>x_M = \\mathrm{max} \\{ x_A , x_B , x_C \\} </math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>x_m = \\mathrm{min} \\{ x_A , x_B , x_C \\} </math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>y_M = \\mathrm{max} \\{ y_A , y_B , y_C \\} <</ins>/<ins class=\"diffchange diffchange-inline\">math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>y_m = \\mathrm{min} \\{ y_A , y_B , y_C \\} <</ins>/<ins class=\"diffchange diffchange-inline\">math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">\u00e8 u so perimetru <math>P<</ins>/<ins class=\"diffchange diffchange-inline\">math> h\u00e8 datu da</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>P = \\sqrt{(x_A </ins>- <ins class=\"diffchange diffchange-inline\">x_B)^2 + (y_A - y_B)^2} + \\sqrt{(x_A - x_C)^2 + (y_A - y_C)^2} + \\sqrt{(x_B - x_C)^2 + (y_B - y_C)^2}</ins>.<ins class=\"diffchange diffchange-inline\"></math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Giumitrii non euclidei ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">U cuncettu di triangulu si stendi ed h\u00e8 ampiamenti usatu in tutti i [[giumitrii non euclidei]]</ins>. <ins class=\"diffchange diffchange-inline\">Un triangulu in una giumitria non euclidea si distingui in generali par u fattu ch'\u00e8 a somma di i so anguli interni \u00f9n h\u00e8 micca 180\u00b0: sta somma h\u00e8 infiriori \u00e0 180\u00b0 par ogni triangulu in u casu d'una [[giumitria iperbolica]], mentri edda h\u00e8 supiriori par ogni triangulu in u casu d'una [[giumitria ellittica]</ins>]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Liami esterni ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">{{it}} </ins>[<ins class=\"diffchange diffchange-inline\">http</ins>://www.<ins class=\"diffchange diffchange-inline\">cnuto</ins>.<ins class=\"diffchange diffchange-inline\">it/lizioni/scenzi</ins>/<ins class=\"diffchange diffchange-inline\">matematica</ins>/<ins class=\"diffchange diffchange-inline\">trigo_primoes</ins>/<ins class=\"diffchange diffchange-inline\">studiu_di i_casi_par_a_risuluzioni_d'_un_triangulu.html Studiu di i casi par a risuluzioni d'un triangulu</ins>]</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>* <ins class=\"diffchange diffchange-inline\">{{en}} </ins>[<ins class=\"diffchange diffchange-inline\">http</ins>://<ins class=\"diffchange diffchange-inline\">mathworld</ins>.<ins class=\"diffchange diffchange-inline\">wolfram</ins>.<ins class=\"diffchange diffchange-inline\">com</ins>/<ins class=\"diffchange diffchange-inline\">Triangle.html Triangle] in [[MacTutor]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Da vede din\u00f2==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Toru (giumitria)]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Giumitria piana]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Angulu rettu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Catetu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Mezaretta]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Perimetru]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Sigmentu]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Triangulu isusceli]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Triangulu equilateru]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Tiurema di Pitagora]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Iputenusa]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Tangenti]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Trigunumitria]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">*[[Uttaedru]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">== Noti ==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\"><references</ins>/<ins class=\"diffchange diffchange-inline\">></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">==Fonti==</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">'Ss'articulu pruveni in parti o in tutalit\u00e0 da l'articulu currispundenti di a wikipedia in talianu.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Categoria:Trianguli| ]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Categoria</ins>:<ins class=\"diffchange diffchange-inline\">Poliguni]]</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">[[Categoria</ins>:<ins class=\"diffchange diffchange-inline\">Matematica di basa]</ins>]</div></td></tr>\n"
}
}